Dafi's Blog

this is my world

Monday, January 11, 2010

From Wikipedia, the free encyclopedia

  (Redirected from Black Hole)
Jump to: navigation, search
Simulated view of a black hole in front of the Large Magellanic Cloud. The ratio between the black hole Schwarzschild radius and the observer distance to it is 1:9. Of note is the gravitational lensing effect known as an Einstein ring, which produces a set of two fairly bright and large but highly distorted images of the Cloud as compared to its actual angular size.
General relativity
G_{\mu \nu} + \Lambda g_{\mu \nu}= {8\pi G\over c^4} T_{\mu \nu}
Einstein field equations
Introduction
Mathematical formulation
Resources
[hide]Phenomena
Kepler problem · Lenses · Waves
Frame-dragging · Geodetic effect
Event horizon · Singularity
Black hole
According to the general theory of relativity, a black hole is a region of space from which nothing, including light, can escape. It is the result of the deformation of spacetime caused by a very compact mass. Around a black hole there is an undetectable surface which marks the point of no return, called an event horizon. It is called "black" because it absorbs all the light that comes towards it, reflecting nothing, just like a perfect black body in thermodynamics.[1] Under the theory of quantum mechanics black holes possess a temperature and emit Hawking radiation.
Despite its invisible interior, a black hole can be observed through its interaction with other matter. A black hole can be inferred by tracking the movement of a group of stars that orbit a region in space. Alternatively, when gas falls into a stellar black hole from a companion star, the gas spirals inward, heating to very high temperatures and emitting large amounts of radiation that can be detected from earthbound and earth-orbiting telescopes.
Astronomers have identified numerous stellar black hole candidates, and have also found evidence of supermassive black holes at the center of galaxies. After observing the motion of nearby stars for 16 years, in 2008 astronomers found compelling evidence that a supermassive black hole of more than 4 million solar masses is located near the Sagittarius A* region in the center of our own Milky Way galaxy.

History

Schwarzschild black hole
Simulation of Gravitational lensing by a black hole which distorts the image of a galaxy in the background. (Click for larger animation.)
The idea of a body so massive that even light could not escape was put forward by geologist John Michell in a letter written to Henry Cavendish in 1783 to the Royal Society:
If the semi-diameter of a sphere of the same density as the Sun were to exceed that of the Sun in the proportion of 500 to 1, a body falling from an infinite height towards it would have acquired at its surface greater velocity than that of light, and consequently supposing light to be attracted by the same force in proportion to its vis inertiae, with other bodies, all light emitted from such a body would be made to return towards it by its own proper gravity.
In 1796, mathematician Pierre-Simon Laplace promoted the same idea in the first and second editions of his book Exposition du système du Monde (it was removed from later editions).[3][4] Such "dark stars" were largely ignored in the nineteenth century, since light was then thought to be a massless wave and therefore not influenced by gravity. Unlike the modern black hole concept, the object behind the horizon of a dark star is assumed to be stable against collapse.

0 comments:

Post a Comment

About Me

clip...